BUCKLING AND VIBRATION OF ARCHES
AND TIED ARCHES

By R. Shankar Nair,' F. ASCE

AesTRACT: A simple method of computing the planar elastic buckling loads,
natural frequencies, and corresponding mode shapes for arches and tied arches
has been developed. The proposed method is applicable to arches and tied
arches of general shape. Stiffnesses of arch rib and tie (if present) may vary in
any manner along the span. The only major limitation in the applicability of
the procedure is that the simplifying idealizations that are made can result in
significant error for very steep arches. The details of the proposed method of
analysis have been developed to be compatible with normal design office prac-
tice. The procedure involves linear elastic analysis with multiple loadings to
obtain a simplified flexibility matrix, manual development of a stability matrix
(for buckling) or mass matrix (for vibration), and solution of an eigenvalue
equation. Several examples that are presented indicate that the proposed method
is accurate—at least to the degree normally required in structural design—for
arches and tied arches that have rise/span ratios within the range customarily
encountered in medium- and long-span bridges.

INTRODUCTION

Most structural design offices today have the means to perform ac-
curate linear elastic structural analysis using a digital computer. This pa-
per presents a simple method of using this linear analysis capability—
without additional computer programming—to determine the critical loads
and modes for planar elastic buckling of arches and tied arches. The arch
does not have to be of any regular shape except that the rib must not
be vertical or near-vertical at any location. Stiffnesses can vary in any
manner,

These features of the proposed method of analysis make it more readily
applicable to most real structures and more convenient in many typical
design-office situations than other techniques described in the literature
(1,3,4). ‘

The proposed technique is applicable to arches and tied arches. Tied
arches have received little attention in the literature on stability, possibly
because of the widespread belief that tied arches are not susceptible to
planar elastic buckling. This belief is reflected in current bridge design
specifications (2). A simple proof that tied arches can be unstable is pre-
sented in Appendix L

The procedure suggested for determination of critical loads and modes
for buckling can be extended very easily to include computation of nat-
ural frequencies and modes for planar vibration of arches and tied arches.

DEFINITION OF STRUCTURE

A tied arch is shown in Fig. 1. There is no restriction on the shape of
the arch rib or on the distribution of stiffness along the rib and tie. Ver-
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FIG. 1.—Definition of Structure

tical displacement components d;, d,, ..., d, are defined at n locations
along the span. The horizontal distance between components d;_; and
d; is defined as a;. The slope of the arch rib in this distance is defined
as ;. The displacement components should be sufficiently close to-
gether that the arch rib can be idedlized as being made up of straight
segments between the locations of these components. The distances 4, ,
a4y, ..., Ay41 do not have to be equal. There does not have to be a d
component at each hanger location.

For an arch without a tie, the vertical displacement components, hor-
izontal distances, and slopes are defined in exactly the same way as for
tied arches.

A “bifurcation”” buckling solution requires that there be no displace-
ments at load intensities less than the critical value. To achieve this
idealized condition in an arch or tied arch, length changes in rib, tie,
and hangers must be neglected and the load configuration must be such
that it causes no deformation (at intensities less than the critical value),
i.e., the loading must be “funicular.” The horizontal component of the
compression in the arch rib caused by this loading is defined as H. The
tension in the tie of a tied arch would also be H. The critical values of
H at which the structure becomes unstable, together with the corre-
sponding buckling modes, will be determined in this analysis.

Limitation.—The effect of horizontal displacement of points on the
arch rib is not modeled accurately in the proposed analysis. The result-
ing errors could be significant for very steep arches. The examples stud-
ied indicate that the proposed technique is sufficiently accurate for typ-
ical engineering design purposes if the maximum slope of the arch rib
is no steeper than 45°.

SecoNp-ORDER FORCES

Consider segment i of the rib and tie (Fig. i). If displacements d;_; and
d; occur at the two ends of segment i, the corresponding changes in
slopes and forces are as follows:

1. Rib slope changes from 0, to 6; + (di-; — d;)/a;.
2. Compression in rib changes from H sec 6; to H sec [6; + (d;-, — d,)/
ﬂ,’].
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3. Vertical component of compression in rib changes from H tan 6; to
Htan [8; + (diey — di)/ai].

4. The slope changes from 0 to (d;_; — d;)/a;.

5. Tension in tie remains H.

6. Vertical component of tension in tie changes from 0 to H(d,_; — d,)/
a;. .
7. Net vertical component in panel i, upward positive at node i, changes
from H tan 0,- to H{tan [9, + (d,'_l - d,-)/u,-] - (d'._l - d,-)/a,-}.

The increase in the net vertical component in panel i, upward positive
at node i, is H{tan [0, + (d,'_l - d,-)/u,-] - [(di—l - d,-)/ui] — tan ﬂi}. By
trigonometric manipulation, this expression can be simplified to H tan’
0:(di-1 — dj)/a;.

Similarly, the increase in the net vertical component in panel i + 1,
downward positive at node i, is H tan® 8;.1(d; — di11)/a;11 .

The additional downward force at node i, p;, required to maintain
equilibrium by balancing the effect of the displacements is given by:
pi= Hl:tan2 0; G d) tan” 6,4, @~ din) d'“)]

a; Ai+1
For an arch without a tie, the equation for f; is identical to Eq. 1 except
that tan’ §; and tan” 8., are replaced by sec” §; and sec” 8,,, , respectively.
The difference between the tied arch and the arch without a tie will
become clearer if it is noted that tan® § = sec? @ — 1. Thus, the effect of
the tie is to reduce terms in the equation for second-order forces from
sec” 8 to sec?2 8 — 1.

For both the tied arch and the arch without a tie, the equation for
second-order forces can be rewritten in matrix notation as follows:

{p} =HIGHd}.......... it e e e e e )
in which, for a tied arch:

tan? §; '
Gii1 = e (3a)
a;
—tanz 0; tanz 0;11
Gi,i = T T S T (3b)
a; Ai+1
tan? 6
Giis1= S (3c)
Ait1

and, for the arch without a tie:

-~ sec? 6,
Gi,i-—l . T Lttt e et e e s s s et st s e e s e e e e s e e e e (4:[1)
a;
—sec?8; sec’®;
Gi= - e (4b)
a; Ai+1
sec? 0,41
Giin1 = L (4c)
Aiv1

and all other elements of [G] are zero.
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LiNeaR FORCE-DISPLACEMENT RELATIONSHIP

The externally applied force corresponding to displacement d; is de-
noted at p; . The linear flexibility matrix that relates {d} and {p}, neglect-
ing second-order effects, is defined by the following equation:

A= IEHPY - oo e (5)

The n x n flexibility matrix, [F], can be determined by performing a
linear elastic analysis of the structure for n separate loading conditions.
The 7 loadings should consist of unit values of p; withi =1, 2, ..., n.
Element F;; in the flexibility matrix is the displacement d; caused by unit
load p; .

This method of determining the flexibility matrix is very convenient
in the design office, It does not require any special computer program-
ming. Any standard frame analysis program can be used for the linear
elastic analysis. The joints and members in the linear analysis should be
defined in such a way as to model the structure accurately; the joints
do not have to be limited to the locations at which the displacements d;
(i=1,2,..., n) have been defined.

Flexural and axial stiffnesses of members should be modeled accu-
rately in the linear analysis. This is inconsistent with the assumptions
in the buckling analysis, which neglects axial deformations in order to
obtain an idealized bifurcation solution. The effect of this inconsistency
is small, as will be shown in the examples of use of the proposed tech-
nique.

BUCKLING SOLUTION

The overall force-displacement relationship for the structure, including
second-order effects, is as follows:

Ay=TFIAp}+1{PD) oo (6)
Substituting Eq. 2 in Eq. 6:
{d =[FUp} + HIFIIGHd} ..o 7)

To obtain the idealized bifurcation buckling solution, prebuckling or first-
order displacements must be taken as zero. Thus, [F]{p} is taken as zero
and the following is obtained:

{dy=HFIIGHd} ..., P 8

Eqg. 8isan eigenvalue problem, which can be solved to obtain the critical
values of the horizontal thrust, H, and the corresponding buckling modes.
Simple computer programs for eigenvalue solution are readily available.

VIBRATION

To determine the natural frequencies and modes for free vibration of
the arch or tied arch, the mass of the structure must be idealized as
being concentrated or “lumped’” at the locations of the n displacement
components. A mass matrix, [M], is defined as an n X n matrix in which
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all nondiagonal elements are zero and the ith diagonal element is the
masgs at the location of displacement component d;.

From the fundamental principals of dynamic analysis, it can be shown
that the equation for free vibration of the structure is as follows:

{d}= @ [FIIMHUAY . ..o oo, e ©)

Eq. 9 is an eigenvalue problem, which can be solved to obtain the nat-
ural frequencies, », and the corresponding vibration modes.

EXAMPLES OF APPLICATION

Several examples have been analyzed to demonstrate the application
of the proposed techniques and to evaluate their accuracy and ease of
use. The structure in Examples 4 and 5 is based on the tied arch in a
recently completed highway bridge. The proposed methods of buckling
and vibration analysis were used by the writer in the design of this bridge,
which has a tied arch span of 909 ft (277 m).

Example 1

The arch in this example (see Fig. 2) does not have a tie. It is a par-
abolic steel arch of constant cross section, without hinges. Exact buckling
solutions for arches of this type are available in the literature. The span
is 910 ft (278 m) and the rise is 182 ft (55.6 m). The cross-sectional area
is 6.61 ft* (0.614 m?) and the moment of inertia is 129 ft* (1.12 m*). The
weight for vibration analysis was taken as 11 kips per foot of horizontal
length (160 kN per meter of horizontal length).

For linear analysis the arch was idealized as 20 straight members. The
joints between the members are denoted by filled circles in Fig. 2. For
the buckling and vibration analyses, 9 displacement components were
established, as indicated by the arrows numbered 1 through 9 in Fig. 2.
Since the structure is symmetric, determination of the 9 X 9 flexibility
matrix required only 5 loading conditions in the linear analysis.

Example 2
The structure in Example 2 is the same as in Example 1. The ideali-
zation for linear analysis was also the same as in Example 1. For the

182 ft

910 ft

-
. S—

FIG. 2.—Structure Analyzed in Example 1 (1 ft = 0.305 m)
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FIG. 3.—Structure Analyzed in Exampie 4 (1 ft = 0.305 m)

buckling and vibration analyses, the number of displacement compo-
nents was increased from 9 to 17.

Example 3

The structure in this example is the same as in Examples 1 and 2 ex-
cept that the cross-sectional area of the arch rib is increased four-fold.
The analysis details were the same as in Example 2,

Example 4

This is a steel tied arch with a parabolic rib (see Fig. 3). The span is
910 ft (278 m) and the rise is 182 ft (55.6 m). There are 17 hangers be-
tween the rib and tie. The hangers are 49 ft (14.9 m) apart; the outermost
hangers are 63 ft (19.2 m) from the ends of the span.

The rib and tie cross sections are not constant. The rib is largest at the
ends of the span, where its area is 2.94 ft* (0.273 m?) and its moment
of inertia is 15.8 ft* (0.136 m*). The tie is largest near the quarter points
of the span, where its area is 3.67 ft* (0.341 m?) and its moment of inertia
is 113 ft* (0.98 m*). The minimum area and moment of inertia of the rib
and tie are about 3/4 of the maximum values. The hangers are multiple
steel cables; the equivalent solid steel area of each hanger is 0.093 ft?
(0.0077 m?). For vibration analysis, the total weight of the structure plus
material supported on it varied from about 11 kips per foot of horizontal
length (160 kN per meter of horizontal length) near the ends of the span
to about 90% of this amount near midspan.

For linear analysis, the rib was idealized as 36 straight members. The
joints in the analysis are denoted by filled circles in Fig. 3. (The joints
are not hinges; the rib and tie are continuous through the joints.) For

“the buckling and vibration analyses, 9 displacement components were
established, as indicated by the arrows numbered 1 through 9 in Fig. 3.
Determination of the 9 x 9 flexibility matrix required only 5 loading con-
ditions in the linear analysis (because of the symmetry of the structure).

Example 5

The structure in Example 5 is the same as in Example 4. The ideali-
zation for linear analysis was also the same as in Example 4. For the
buckling and vibration analyses, the number of displacements was in-
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creased from 9 to 17. (A displacement component was established at
each hanger location.)

Example 6

The structure in this example is the same as in Examples 4 and 5 ex-
cept that the cross-sectional area of rib, tie, and hangers is increased
four-fold. The analysis details were the same as in Example 5.

RESULTS OF EXAMPLE ANALsts

" The critical horizontal thrust, H, computed for the first two modes of
buckling in each of the six examples is presentéd in Table 1. The natural
periods for the first two modes of vibration are also tabulated. (The tab-
ulated periods, in seconds per cycle, are equal to 2w/w.) The buckling
and vibration mode shapes for Examples 1 and 4 are shown in Figs. 4
and 5, respectively. In all six examples, the first and third modes for
both buckling and vibration were found to be antisymmetric while the
second mode is symmetric.

Effect of Number of Displacement Components.—Examples 2 and 5
are identical with Examples 1 and 4, respectively, except that 1 and 4
were analyzed using 9 displacement components while 17 components
were used in Examples 2 and 5. It is clear from the results presented in
Table 1 that the increase in the number of displacement components, #,
had only a modest effect on the results of the stability analysis and es-
sentially no effect on the results of the vibration analysis. A further in-
crease in n, beyond 17, could be expected to have very little effect on
the stability results. The solutions with n = 9 should be adequate for
most purposes.

Effect of Axial Stiffness.—There is an inconsistency in the proposed
method of stability analysis in that the buckling solution neglects axial
deformations (in order to obtain an idealized “bifurcation” solution), while
the linear analysis to obtain the flexibility matrix does include axial de-
formations. Examples 3 and 6 (which are identical with 2 and 5 except
for a four-fold increase in the axial stiffness of all members) are intended
to evaluate the importance of this inconsistency.

TABLE 1.—Crltical Loads and Natural Perlods in Example Analyses

Critical Horizontal Natural Period
Type Number of Axial Jhrust,f(;lz of Vibration
Exam- of displacement | stiffness of (kips x 10°) (sec)

ple arch | components, n members Mode 1 | Mode 2 | Mode 1 | Mode 2
M @ ®) 4) (6) (6) @) ®)
1 Fixed 9 Normal 4.7 789 2.24 1.25
2 Fixed 17 Normal 43.0 73.2 - 2.24 1.26
3 Fixed 17 High 43.2 73.3 2.24 1.25
4 Tied 9 Normal 87.0 200.9 3.36 1.71
5 Tied 17 Normal 83.4 188.9 3.39 1.72
6 Tied 17 High 85.8 204.5 3.35 1.65

Note: 1 kip = 4.45 kN.
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FIG. 4.—First Two Buckling Modes (Upper Curves) and Vibration Modes (Lower
Curves) in Example 1
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FIG. 5.—First Two Buckling Modes (Upper Curves) and Vibration Modes (Lower
Curves) in Example 4

In the fixed arch, rib axial stiffness has virtually no effect on the buck-
ling solution (see Table 1). In the tied arch, the axial stiffnesses of rib,
tie, and hangers appear to have a slight effect on the first-mode buckling
solution and a moderate effect on the second-mode solution.

Comparison with Exact Solution.—Exact buckling solutions are avail-
able in the literature (3) for parabolic arches of constant stiffness. For
the arch in Examples 1, 2, and 3, the exact solution for critical horizontal
thrust, H, is 41.1 x 10° kips for the first mode of buckling. Thus, the
error in Examples 2 and 3 is about 5%. This error would not be reduced
significantly by using a larger number of displacement components in
the analysis. The 5% error occurs because the effect of horizontal dis-
placement of points on the arch rib is not modeled accurately in the
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proposed method of analysis. The magnitude of the error would be greater
for steeper arches and smaller for shallower arches.

SUMMARY OF SUGGESTED PROCEDURE

The suggested procedure for determining the buckling loads, vibration
frequencies, and corresponding modes for arches and tied arches con-
sists of the following steps:

1. Idealize the structure for linear analysis (to be performed using any
general frame analysis computer program). The computational model se-
lected here could be the same as that used for detailed design of the
structure.

2. Select n and establish n vertical displacement components for buck-
ling and vibration analysis. Between 8 and 15 components should be
adequate in most cases.

3. Determine the n X n flexibility matrix, [F], by performing a linear
analysis of the structure for n separate loading conditions, each of which
is a unit load along one of the selected displacement coordinates. (For
symmetric structures, the number of loadings can be reduced by only
applying those on half of the structure.)

4, For buckling analysis, determine nonzero elements in the stability
matrix, [G], using Eq. 3 or 4. For vibration analysis, determine the mass
matrix, [M], by computing the mass tributary to each of the n displace-
ment components.

5. Solve the nth-order eigenvalue problem, Eq. 8 for buckling or Eq.
9 for vibration, to obtain the critical values of horizontal thrust, H, or
the natural frequencies, w, and the corresponding mode shapes.

CONCLUSIONS

The proposed technique for buckling and vibration analysis is appli-
cable to most arches and tied arches. The details of the procedure are
compatible with normal design office practice and do not require special
programming or computational expertise. The proposed methods are ac-
curate—at least to the degree normally required in structural design—
for arches and tied arches that have rise/span ratios within the range
customarily utilized in medium- and long-span bridges.

The general analytical concept used in this work consists of linear
analysis with multiple loadings to obtain a reduced flexibility matrix,
followed by use of this flexibility matrix with a stability or mass matrix
in an eigenvalue solution. This concept is applicable to a wide range of
stability and vibration problems.

ApPENDIX |.—SIMPLE PROOF THAT TIED ARCHES CAN BE UNSTABLE

A highly idealized four-panel tied arch is shown in Fig. 6(a). There
are hangers (and loading points) at midspan and at quarter points. The
rib is straight between hanger locations. To simplify the structure fur-
ther, the load at the quarter points is defined as being zero and, con-
sequently, there is no change in the slope of the rib at these points in
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FIG. 6.—Idealized Tied Arch for Proof of Susceptibility to Buckling: (a) Unde-
formed Configuration; and (b) Displacements

the undeformed structure. The span is 4s; the rise is 2s; the downward
load at midspan is P. All members (rib, tie, hangers) are considered to
be hinged at all intersection points, as denoted by circles in Fig. 6(a).
The hangers and the rib and tie segments between hinges are perfectly
rigid. There are rotational springs of stiffness k (moment per radian) be-
tween the rib segments at the quarter-point hinges.

This idealized structure bears little physical resemblance to most real
tied arches. However, it should serve as a convenient model for ex-
amining the validity of the idea that tied arches are not susceptible to
overall planar buckling. The arguments for the tied arch’s immunity from
buckling are applicable also to this idealized structure.

The literature on buckling of arches (1) suggests that the structure in
Fig. 6(a) should not be susceptible to buckling, since any disturbing ef-
fect due to deformation of the rib would be counteracted by an equal
“restoring’’ effect at the tie. As demonstrated by the following analysis,
this reasoning is not strictly valid, in that the restoring effect of the tie
reduces, but does not totally eliminate, the arch’s susceptibility to buck-
ling.

Consider a set of displacements imposed on the structure as shown
in Fig. 6(b). The rib quarter points are displaced by V2A from the straight
lines connecting the apex and the ends of the rib. The resulting down-
ward displacement of the quarter points in the tie is shown as A in Fig.
6(b). (The tie displacement would actually be slightly less than A owing
to the tilt of the hanger. Ignoring this effect, which is of a smaller order
of magnitude, results in an upper-bound value of tie displacement, an
upper-bound accounting of the “restoring’”” effect of the tie, and an up-
per bound of buckling load.) ,

As a result of displacements A at the quarter points, the overall chord
length of the tie changes from 4s to 4s cos (A/s).

As a result of displacement \/2A at the quarter points of the rib, the
chord length of the rib between the apex and the point of connection to
the tie changes from 2V/2s to 2\/2s cos (A/s).

Thus, all three sides of the triangle formed by the apex and the two
support points are reduced in length by a factor of cos (A/s). It follows
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that the height of the apex above the supports changes from 2s to 2s cos
(A/s). Thus, the point of application of load P moves downward by an
amount equal to 25[1 — cos (A/s)]. For small values of (A/s), cos (A/s)
approaches [1 — (A/s5)?/2] and 2s[1 — cos (A/s)] approaches A?/s.

If the displacements shown in Fig. 6(b) represent buckling under load
P, the work done by load P must be equal to the work done on the
springs. The critical value of the load, P., at which buckling occurs can
be determined as follows:

A2

Distance moved by load = PUREE R R PR LR TERERERRRPR (10a)
PA? '
Work done by load = T N (100)
. . 2A
Rotationof spring = — ... (10c)
s
24\’
2k| —
. s 4kA?
Work done by two springs = Ty T T e (10d)
. P.A*  4kA?
For buckling: s = R SRR ETIT (10¢)
4k
Pom — (101)

It can be shown that if the tie and hangers are eliminated from the
structure in Figs. 6(z and b) and the ends of the rib are pinned to non-
movable supports, the critical load changes to 2k/s. The effect of the tie,
therefore, is to double the structure’s resistance to buckling in this in-
stance. In general, the proportionate increase in buckling resistance caused
by a tie will be greater for shallower arches and smaller for steeper arches.
In all cases, however, the tied arch is susceptible to buckling, though at
a load greater than the critical load for an arch of equal geometry and
stiffness without a tie.
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Aprenpix Ill.—NoTATION ]
The following symbols are used in this paper:
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a; = horizontal distance between displacement coordinates i — 1
and i;

d; = vertical displacement along ith coordinate;
[F] = flexibility matrix relating {p} and {d};
[G] = stability matrix (defined in Eq. 2);

H = horizontal component of compression in arch rib;
[M] = mass matrix;

n = number of vertical displacement coordinates;

pi = externally applied force along ith coordinate;

pi = second-order force along ith coordinate;

8, = slope of arch rib between location of coordinates i — 1 and i;

and ‘
o = vibration frequency in radians per unit time.
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